Introduction to Machine Learning

SUBJECT: EE-107,Introduction to Machine Learning

CREDIT HOURS: 3-0

CONTACT HOURS: Theory: 3 Hours per Week

REFERENCE BOOK: "Understanding Machine Learning: From Theory to

Algorithms", Shai Shalev-Shwartz and Shai Ben-David,

Cambridge University Press, latest edition

PREREQUISITE: None

MODE OF TEACHING: Lectures and Demonstrations.

COURSE DESCRIPTION: This course is consists of topics pertaining to machine learning from introductory to a bit advanced level. The contents broadly cover two categories of machine learning techniques: supervised as well as unsupervised machine learning. The lectures may be supplemented by related demonstrations and home tasks using MATLAB (or other appropriate tools/languages).

COURSE OBJECTIVES:

- a. The main objective of this course is to provide a comprehensive presentation of the fundamentals of machine learning and analysis both from a theoretical as well as practical point of view.
- b. To familiarize the students with the supervised machine learning techniques in the context of computer vision problems.
- c. To familiarize the students with the unsupervised machine learning techniques in the context of computer vision problems.
- d. To enable students to implement all theoretical information gained during the lectures and also to program solutions to practical problems in MATLAB (or other appropriate tools/languages).

TOPICS COVERED:

S.No	Topic	Week/Lecture	
1	Introduction to Machine Learning	1	
	Supervised vs. unsupervised machine learning		
2	Feature Extraction	2-3	
3	Dimensionality Reduction using Principle Component Analysis	4	
4	Naïve Bayes Classification	5	
5	k-Nearest Neighbors Classification	5	
6	Support Vector Machines	6	
7	Decision Trees	7	
8	Regression	8-9	
9	Random Forest Classification	10	
10	Deep Neural Networks for Classification	11-12	
11	Performance Evaluation of Classifiers	13	
12	Clustering (K-means, Mean-Shift)	14-15	
13	Applications of Machine Learning in Computer Vision	16	

COURSE TARGETS:

		PLOs	Learning
			Level
CLO 1	Understanding of the supervised and unsupervised	PLO 3	
	machine learning problems while utilizing prior		C2
	mathematical and engineering knowledge		
CLO 2	Investigation and analysis of the experimental results	PLO 4	
	of applying different machine learning techniques to		C4
	real-world computer vision problems		

CLO 3	Investigate and report on a study that explores the	PLO 7	
	effect of applying machine learning technique(s) on		C4
	environment and/or sustainability		